Super Beam Experiments

- What's a Super Beam?
- The Physics
- Some of the common features
- Specific Proposals
 - Jaeri to Super-Kamiokande
 - CERN to Frejus
 - CERN to Gulf of Taranto
 - Fermilab to "Up North" via NuMI
 - Brookhaven to NUSEL (or others?)
- Conclusions

Douglas Michael California Institute of Technology NuFACT 03 June 5, 2003

- Thanks to the following people from whom I have borrowed/collected various slides and figures which I have included in this talk:
 - J. Cooper, M. Diwan, F. Dydak, A. Kondo-Ichikawa,
 K. McDonald, M. Mezzetto, T. Nakaya, K. Nishikawa,
 A. Para, S. Wojcicki
 - Those are my sources... I appologize if they have borrowed from you and I haven't followed the chain of acknowledgement.

What's a "Super Beam" Experiment?

- I know it when I see it. (Justice Potter Stewart)
- Any conventional neutrino beam experiment where currently there is:
 - No Accelerator or
 - No Detector or
 - No Beamline or
 - Combinations of all of the above.
- A conventional neutrino beam experiment with a whole lot of proton power and a really big detector.
- I'll settle for defining a "Super Beam" experiment as any conventional, long baseline, high energy neutrino beam experiment seriously "proposed" but not yet approved.

Physics Goals

- Improved measurement of v_{μ} disappearance oscillation parameters.
 - Any odd energy/distance features?
 - How close is $\sin^2 2\theta_{23}$ to 1.0? New symmetry?
- Measure the m_{23} mass heirarchy using matter effects.
- Measure θ_{13} or show that it is so small that it is somehow "odd" compared to the other mixing parameters... Mechanism for making it so small?
- Attempt to measure CP violation, if θ_{13} is big enough.
- Constrain CPT violation (or discover it!)
- And what if LSND is confirmed???????? Things get very interesting, and complicated.

$$v_{\mu} \Longrightarrow v_{e}$$
 oscillation experiment
 $P(v_{\mu} \rightarrow v_{e}) = P_{1} + P_{2} + P_{3} + P_{4}$

 $P_{1} = \sin^{2} \theta_{23} \sin^{2} \theta_{13} \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin^{2} \frac{B_{\pm}L}{2} \qquad \qquad \Delta_{ij} = \frac{\Delta m_{ij}^{2}}{2E_{\nu}};$ $P_{2} = \cos^{2} \theta_{23} \sin^{2} \theta_{12} \left(\frac{\Delta_{12}}{A}\right)^{2} \sin^{2} \frac{AL}{2} \qquad \qquad A = \sqrt{2}G_{F}n_{e};$ $P_{3} = J \cos \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \cos \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2} \qquad \qquad B_{\pm} = \left|A \pm \Delta_{13}\right|;$ $P_{4} = J \sin \delta \left(\frac{\Delta_{12}}{A}\right) \left(\frac{\Delta_{13}}{B_{\pm}}\right) \sin \frac{\Delta_{13}L}{2} \sin \frac{AL}{2} \sin \frac{B_{\pm}L}{2} \qquad \qquad J = \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23}$

 $\boldsymbol{P} = \boldsymbol{f}(\sin^2 2\boldsymbol{\theta}_{13}, \boldsymbol{\delta}, \operatorname{sgn}(\Delta \boldsymbol{m}_{13}^2), \Delta \boldsymbol{m}_{12}^2, \Delta \boldsymbol{m}_{13}^2, \sin^2 2\boldsymbol{\theta}_{12}, \sin^2 2\boldsymbol{\theta}_{23}, \boldsymbol{L}, \boldsymbol{E})$

3 unknowns, 2 parameters under control L, E, neutrino/antineutrino Need several independent measurements to learn about underlying physics

Note, if there are any sterile v's things can be more complicated!

Example from NuMI Off-Axis

Oscillation probability vs physics parameters

Example from NuMI Off-Axis

Parameter correlation: even very precise determination of P_v leads to a large allowed range of $\sin^2 2\theta_{23} \rightarrow \text{antineutrino beam}$ is more important than improved statistics

The Off-Axis Trick

0.75MW 50 GeV PS

E_v (GeV)

Decay Volume

4MW beam can be accepted.

- Muon monitors @ ~140m
 - Fast (spill-by-spill) monitoring of beam direction/intensity
- First Near detector @280m
 Neutrino intensity/spectrum/direction
- Second Near Detector @ ~2km
 - Almost same E_{ν} spectrum as for SK
 - Water Cherenkov can work
- Far detector @ 295km
 - Super-Kamiokande (50kt)

Neutrino spectra at diff. dist x 10 1800 1.5km 1600 1400 1200 295km 1000 800 600 0.28km 400 200 0 0 0.5 1.5 2 2.5 3.5 4.5 1 3

dominant syst. in K2K

Ev (GeV)

Measurement of sin² 2 θ 23, Δm^2 23 Based on 5 years running with full 0.75 MW Jaeri Beam

ve appearance in JHF-Kamioka

Back ground for v_e appearance search

- Intrinsic v_e component in initial beam
- Merged π^0 ring from ν_{μ} interactions

Requirement \square 10% uncertainty for BG estimation

The 1kt π^0 data will be studied for exercise

$sin^2 2\theta_{13}$ from v_e appearance

3. JHF v experiment -CPV

Nakaya

 v / \overline{v} beam flux

Nakaya

Hyper-Kamiokande

Expected signal and Background

4MW 0.54Mt

 v_{μ} :2yr, $\overline{v_{\mu}}$:6.8yr Δm_{21}^2 =6.9x10⁻⁵eV² $\Delta m_{32}^2 = 2.8 \times 10^{-3} eV^2$ θ_{12} =0.594 $\theta_{23} = \pi/4$ $\theta_{13}=0.05 (sin^2 2\theta_{13}=0.01)$

	signal		background						
	δ=0	δ=π/2	total	ν_{μ}	$\overline{\mathbf{v}}_{\mu}$	ν _e	ve		
$v_{\mu} \rightarrow v_{e}$	536	229	913	370	66	450	26		
$\overline{\nu_{\mu}} \rightarrow \overline{\nu_{e}}$	536	790	1782	399	657	297	430		

Nakaya

<u>CP sensitivity (3σ)</u>

 3σ CP sensitivity : $|\delta|$ >20° for sin²2 θ_{13} >0.01 with 2% syst.

CERN SPL to Frejus

Mezzetto

M. Mezzetto, "SuperBeam studies at CERN", Nutlact 01, Tsukuba, May 24-30, 2001

Fluxes for SPL Beam

Mezzetto

Preliminary CP sensitivity

Off-Axis CNGS to Gulf of Taranto

Detector wall in Guif of Taranto...

Depth	1000 m
Diamater	300 m
No. of PMT's	8000
Distance between PMT's	32 m
Area per PMT	8.9 m²
Transverse dimension of mirror unit	1.2 m
Fraction of active coverage	14%

...later re-arranged as km³ underwater array

Depth Distance between PMT's	as large as possible 50 m
	No. of events
Reference: v^{π}_{μ} CC events w/ o oscillat	ion 14700
NC background (1 π^{o}) from v_{μ}^{π}	50
NC background (1 π^{o}) from v_{μ}^{K}	30
Intrinsic V_{e} (~ 0.1%)	20
Sum of all backgrounds	100
Error on background (stat. + syst.)	15
90% CL on $\sin^2\theta_{13}$	~ 0:002

෯෯෯෯෯෯෯෯෯෯෯෯ <u>ඁ</u>෦෯෯෯෯෯෯෯෯෯෯෯ ෩෯෯෯෯෯෯ ෯෯෯෯෯෯෯෯෯෯෯ ෪෯෯෯෯෯෯෯෯෯෯෯෯෯෯෯෯෯෯෯ 2MT fiducial mass running for 3 years with 5x10¹⁹ protons/year Dydak

Gulf of Taranto Detector

Dydak

•~ 2 GeV energy :

- Below t threshold
- Relatively high rates per proton, especially for <u>antineutrinos</u>
- •Matter effects to differentiate mass hierarchies
- •Baselines 700 1000 km

Sources of the v_e background

NuMI Off-axis Detector

Low Z imaging calorimeter:

- Glass RPC or
- Drift tubes or
- Liquid or solid scintillator

Electron ID efficiency ~ 40% while keeping NC background below intrinsic v_e level Well known and understood detector technologies

Primarily the engineering challenge of (cheaply) constructing a very massive detector

How massive??

50 kton detector, 5 years run =>

- 10% measurement if $\sin^2 2\theta_{13}$ at the CHOOZ limit, or
- 3σ evidence if $\sin^2 2\theta_{13}$ factor 10 below the CHOOZ limit (normal hierarchy, $\delta=0$), or
- Factor 20 improvement of the limit

Cooper

Signal and background

Background examples

Wojcicki

Two phase program?

Phase I? (~ \$100-200 M, running 2008 – 2014)

- 50 kton (fiducial) detector with $\varepsilon \sim 35-40\%$
- 4x10²⁰ protons per year (Nominal NuMI design plan... conservative? 6-8?)
- 1.5 years neutrino (6000 v_{μ} CC, 70-80% 'oscillated')
- 5 years antineutrino (6500 v_{μ} CC, 70-80% 'oscillated')

Phase II? (running 2014-2020)

- 200 kton (fiducial) detector with $\varepsilon \sim 35-40\%$
- 20x10²⁰ protons per year (needs new proton source)
- 1.5 years neutrino (120000 v_{μ} CC, 70-80% 'oscillated')
- 5 years antineutrino (130000 v_{μ} CC, 70-80% 'oscillated')

NuMI Off-Axis Sensitivity for Phases I and II

We take the Phase II to have 25 times higher POT x Detector mass

Neutrino energy and detector distance remain the same

	NuMI 50 kton, 8: years, 4x	Off-axis 5% eff, 5 10 ²⁰ pot/y	JHF to SK Phase I, 5 years		
	all	After cuts	all	After cuts	
ν_{μ} CC (no osc)	28348	6.8	10714	1.8	
NC	8650	19.4	4080	9.3	
Beam v _e	604	31.2	292	11	
Signal ($\Delta m_{23}^2 = 2.8/3 \text{ x}$ 10 ⁻³ , NuMI/JHF)	867.3	307.9	302	123	
FOM (signal/&bckg)		40.7		26.2	

Determination of mass hierarchy: complementarity of JHF and NuMI

Combination of different baselines: NuMI + JHF extends the range of hierarchy discrimination to much lower

mixing angles

Minakata, Nunokawa, Parke Para

$BNL \rightarrow Homestake$ Super Neutrino Beam

28 GeV protons, 1 MW beam power500 kT Water Cherenkov detector5e7 sec of running, Conventional Horn based beam

AGS Target Power Upgrade to 1 MW

 the AGS Upgrade to provide a source for the 1.0 MW Super Neutrino Beam will cost \$265M FY03 (TEC) dollars

Diwan

UNO: The Study Baseline

500 kt Water Cerenkov

100 kT LANNDD ~Equivalent?

Neutrino spectrum from AGS

- Proton energy 28 GeV
- 1 MW total power
- $\sim 10^{14}$ proton per pulse
- Cycle 2.5 Hz
- Pulse width 2.5 mu-s
- Horn focused beam with graphite target
- 5x10⁻⁵ v/m²/POT @ 1km

Advantages of a Very Long Baseline

- neutrino oscillations result from the factor $\sin^2(\Delta m_{32}^2 L / 4E)$ modulating the v flux for each flavor (here v_{μ} disappearance)
- the oscillation period is directly proportional to distance and inversely proportional to energy
- with a very long baseline actual oscillations are seen in the data as a function of energy
- the multiple-node structure of the very long baseline allows the ∆m₃₂² to be precisely measured by a *wavelength* rather than an amplitude (reducing systematic errors)

VLB Application to Measurement of Δm_{32}^2

- the multiple node method of the VLB measurement is illustrated by comparing the BNL 5-year measurement precision with the present Kamiokande results and the projected MINOS 3-year measurement precision; all projected data include both statistical and systematic errors
- there is no other plan, worldwide, to employ the VLB method (a combination of target power and geographical circumstances limit other potential competitors)
- other planned experiments can't achieve the VLB precision

v_e Appearance Measurements

- a direct measurement of the appearance of v_µ→v_e is important; the VLB method competes well with any proposed super beam concept
- for values > 0.01, a measurement of sin²2θ₁₃ can be made (the current experimental limit is 0.12)
- for most of the possible range of sin²2θ₁₃, a good measurement of θ₁₃ and the CP-violation parameter δ_{CP} can be made by the VLB experimental method

v_e Appearance Measurements (Cont.)

- even if $\sin^2 2\theta_{13} = 0$, the current best-fit value of $\Delta m_{21}^2 = 7.3 \times 10^{-5}$ induces a v_e appearance signal
- the size of the v_e appearance signal above background depends on the value of Δm_{21}^2 ; the figure left indicates the range of possible

measured values for the ν_e yields above background for various assumptions of the final value of $\Delta m_{21}{}^2$

Mass -ordering and CP-violation Parameter δ_{CP}

• the CP-violation parameter δ_{CP} can be measured in the VLB exp. And is relatively insensitive to the value of sin²2 θ_{13}

• the mass-ordering of the neutrinos is determined in the VLB exp; $v_1 < v_2 < v_3$ is the natural order but $v_1 < v_3 < v_2$ is still possible experimentally; VLB determines this, using the effects of matter on the higher-energy neutrinos

Possible limits on $sin^22\theta_{13}$ versus δ_{CP}

 For normal mass ordering limit on sin²2θ₁₃ will be 0.005 for no CP

If reversed mass ordering then need to run antineutrinos

Diwan

Comparison of Some Experiments

		F2S	C2GT	JHF2K	JHF2K-II	C2F	C2F+BB	νF	MINOS25	BNL-NUSEL
$\langle E_{\nu} \rangle [GeV]$		2	0.8	1	1	0.3	0.3	10	1-5	1-10
Fiducial mass	Water Cherenkov		1 Mt	$22.5 \mathrm{kt}$	1 Mt	40 kt	1Mt]	500 kT
	Iron/scintillator	20 kt						40 kt	5kT	100kt I A 2
	Plastic/RPCs	20 kt]	TOOKI LA!
Physics reach	$\sigma(\Delta m_{23}^2)$ [eV ²]	1×10^{-4}	3×10^{-5}	1×10^{-4}		1×10^{-4}			2x10-4	1x10-4
	$\sigma(\sin^2 2\theta_{23})$	0.01	0.01	0.01		0.01			0.05	0.01
	$\sin^2 \theta_{13}$ [90% CL]	1.5×10^{-3}		1.5×10^{-3}	2.5×10^{-4}	1.5×10^{-3}		2.5×10^{-5}	~0.03	~0.003
	θ_{13} [deg; 90% CL]	2.2		2.2	0.9	2.2		0.3		Var
	$sgn \Delta m_{28}^2$?	No	No	?	No	No	Yes	?	Yes
	CP-violation	No	No	No	?	No	?	Yes	No	Y es But may
Incremental material cost		0 1 0 2	0.1	0.2	1.0	0.7	2.0	2.0	0.0.05	Need nubar
(facility + detector [10 ⁹ US \$])		0.1-0.2							0-0.05	1.0
Year of earliest operation		2008	2	008	20	15	2	020	Done 2010	2010-2012?

- Although no option provides a "fast path" to the future of oscillation measurements, there do appear to be several paths which will provide a rich variety of data on these measurements.
- It is likely that more than one will be essential to completely answer all of the questions available in a reasonable period of time.
- Take care for discovery potential beyond what we think we are after now!
- Which ones to undertake? The attraction of incremental investments certainly appears seductive... But taking a bolder step should be seriously considered and debated.