PRELIMINARY CONSIDERATIONS ABOUT THE DESIGN OF THE SOLENOID AND THE END-COILS FOR THE MICE COOLING EXPERIMENT

 described by R.B. Palmer and R. Fernow in their latest Note (23 August 2002).B_{z} (T)

PRELIMINARY DESIGN: the solenoid (in orange) and the end-coils (in blue).

INVESTIGATED ASPECTS:

- choice of the conductor
- Definition of the magnetic parameter (number of turns, operative current, etc)
- load line
- temperature margin
- protection

SOLENOID DESIGN: conductor and magnetic parameters.

Overall dimensions: $\quad 1.26 \times 0.04 \mathrm{~m}^{2}$
Ampere turns: $\quad 4.08 \cdot 10^{6} \mathrm{~A}$ enthalpy margin; i.e. at a current $\ll \mathrm{I}_{\mathrm{C}}$.

Maximum field on the winding $=4.0 \mathrm{~T}$

The operative current (260 A) is:

- 22% of the conductor critical current (1210 A)
- 53% of the magnet critical current (492 A)

TEMPERATURE MARGIN Δ T: the temperature increase needed to have power dissipation in the coil.

$\Delta \mathrm{T}$ is the difference between the sharing temperature T_{g} and the operative temperature T_{o} :
$\mathrm{T}_{\mathrm{o}}=4.5 \mathrm{~K}$
$\mathrm{T}_{\mathrm{C}}=7.6 \mathrm{~K}$
$\mathrm{Tg}=6.9 \mathrm{~K}$
$\Delta \mathrm{T}=2.4 \mathrm{~K}$

PROTECTION: the hot spot temperature should be lower than 200 K .

PROTECTION CIRCUIT:

If $\mathrm{R}=2 \Omega$

END COILS DESIGN: ANSALDO has available a conductor and a cryostat (with 60 A HT_{C} current leads) for a non-constructed coil.

CONDUCTOR CHARACTERISTIC:
Diameter (bare): 1.5 mm
Diameter (insulated): 1.56 mm
Number of filaments: 92
Filament diameter: $\quad 80 \mu \mathrm{~m}$
Critical current:

$$
\begin{array}{r}
543 \mathrm{~A} @ 7.52 \mathrm{~T} \\
786 \mathrm{~A} @ 6.10 \mathrm{~T} \\
1000 \mathrm{~A} @ 4.90 \mathrm{~T} \\
1073 \mathrm{~A} @ 4.46 \mathrm{~T} \\
1233 \mathrm{~A} @ 3.54 \mathrm{~T}
\end{array}
$$

AVAILABLE LENGTHS:

1. 1900 m
2. 2000 m
3. 2100 m
4. 2200 m
5. 2300 m
6. 2420 m
7. 2520 m
8. 2700 m
9. 3540 m

Totally: 21.68 Km

INFN
 INNER END-COIL

OUTER END-COIL

PALMER NOTE PARAMETERS:

Overall dimensions:
Ampere turns:
$0.12 \times 0.075 \mathrm{~m}^{2}$
$0.9 \cdot 10^{6} \mathrm{~A}$

Overall dimensions:
Ampere turns:
$0.12 \times 0.075 \mathrm{~m}^{2}$
$1.1 \cdot 10^{6} \mathrm{~A}$

END-COIL DESIGN:

Number of layers:	77	Number of layers:	77
Number of turns per layer:	34	Number of turns per layer:	42
Length:	0.12 m	Length:	0.12 m
Winding thickness:	0.05304 m	Winding thickness:	0.06552 m
Total conductor length:	4.55 Km	Total conductor length:	5.08 Km
Operative current:	344 A	Operative current:	344 A
Ampere turns:	$0.90 \cdot 10^{6} \mathrm{~A}$	Ampere turns:	$1.11 \cdot 10^{6} \mathrm{~A}$
current density:	$140 \mathrm{~A} / \mathrm{mm}^{2}$	current density:	$140 \mathrm{~A} / \mathrm{mm}^{2}$
Inductance:	14.1 H	Inductance:	21.5 H
Magnetic energy:	0.83 MJ	Magnetic energy:	1.27 MJ

END-COIL LOAD LINE

Maximum field on the winding (outer end-coil) $=6.3 \mathrm{~T}$

The operative current (344 A) is:

- 45% of the conductor critical current (757 A)
- 78% of the magnet critical current (443 A)

END-COILS

TEMPERATURE MARGIN:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{o}}=4.5 \mathrm{~K} \\
& \mathrm{~T}_{\mathrm{C}}=6.5 \mathrm{~K} \\
& \mathrm{Tg}=5.6 \mathrm{~K} \\
& \Delta \mathrm{~T}=1.1 \mathrm{~K}
\end{aligned}
$$

PROTECTION:

If $\mathrm{R}=2 \Omega$
$\mathrm{T}_{\text {Hot SPOT }}<200 \mathrm{~K}$

THE PROBLEM OF THE AXIAL FORCES

SOLENOID	AXIAL FORCE		
(ton)			
focus	123.9		
coupling	9.8		
focus	-121.1		
focus	163.5		
match	-2.0		
match	34.7		
end	40.2		
solenoid	0.8	$\}$	-92.2
end	-133.2		

TOTALLY: 116.8 ton ($=1.14 \mathrm{MN}$)

COOLING: Indirect with 4.5 K cryocooler (1-2 W)
First stage keeps cool the thermal shields
Additional cooling for the (strong?) axial supports?

LHe cooling + 40 K cryocooler only for shield and support thermal intercepts

Longitudinal copper strips at every 5 layers

MECHANICS

The coil is relatively thin (50 mm). Hoop and axial stress and deformation shall be studied and a mechanical structure may be needed (in this case we are thinking to an anisotropic steel banding, already used in the 400 mm bore 8 T insert of our laboratory).
Coil lay-out: main and end-coils as part of the same col mass.

