Experimental requirements for liquid absorber & Detail absorber design for MICE

Shigeru ISHIMOTO KEK

MICE collaboration meeting 27-29 MAR, 2003 at CERN

OUTLINE

- 1) Experimental requirements for liquid absorber
- 2) Detail absorber design for MICE
- 3) Requests to make the absorber safer and simpler

Experimental requirements for liquid absorber

(1) Dimension

- L=300, D=300
- possible to change L' = 200 for example

 \rightarrow Needs gasket flange ?

- (2) Absorber center error; +/- 2 mm ?
- (3) Total weight as light as possible
- (4) Possible to change liquid LH2 $\leftarrow \rightarrow$ LHe
- (5) Quick method for empty (heater or heat exchange gas...)

Experimental requirements for liquid absorber

(6) Liquid level should be constant and full

- (7) Liquid density should be constant; +/- 1%?
 - \rightarrow T, P constant
 - → Temperature uniformity
- (8) Minimum bubble
- (9) No or minimum solid (H2) in absorber

Experimental requirements for liquid absorber

(10) No leak any combination

absorber, He-system, vacuum chamber

(11) Vacuum (RF, Mag, Absorber vac.) and absorber system should be hold when any space failed to 1atm.

(12) Monitors

T, P, liquid level

(13) Requirement of He for absorber

- T; 4.2 14K
- Flow; 0 5 g/s

Mar-26, 2003

TECHNICAL DATA

Dimensions: Ø.150 to Ø80 in. (Ø3.8 to Ø2000mm) Temperature: -458 to 1292 °F -272 to 700 °C +1.8 to 427 °K Helium sealing level: Q ≤ 10⁻¹³atm cm³/s

Seal Classification Type: HNV

DEFINITION OF TERMS

- Y₀ = load on the compression curve above which leak rate is at required level
- Y₂ = load required to reach optimum compression e₂
- Y₁ = load on the decompression curve below which leak rate exceeds required level
- e2 = optimum compression

JACKET	SEAL DESIGN INFORMATION										
Aluminum	Cross S in	Se Section mm	al ∆ Height in mm		Compression e ₂ in mm		Helium Sealing Y ₂ Ib/in daN/cm		Flange Hardness HV minimum	Maximum Temp ⁰F ℃	
	0.079	2.0	0.075	1.9	0.024	0.6	571	100	65	302	150
	0.106	2.7	0.102	2.6	0.028	0.7	799	140	65	428	220
	0.134	3.4	0.130	3.3	0.031	0.8	799	140	65	482	250
	0.161	4.1	0.157	4.0	0.035	0.9	799	140	65	536	280
	0.193	4.9	0.189	4.8	0.035	0.9	799	140	65	536	280
	0.228	5.8	0.220	5.6	0.039	1.0	857	150	65	608	320
	0.272	6.9	0.264	6.7	0.043	1.1	857	150	65	644	340

JACKET	GROOVE DESIGN INFORMATION											
Aluminum	Seal Δ Height in mm		Depth in mm		Recommended Width in mm		Mini Width in mm		Clearance OD seal/OD groove in mm		Recommended Surface Finish RMS Rainµm	
	0.075	1.9	0.051	1.3	0.195	5.0	0.100	2.5	0.020	0.5	≤ 32	≤ 0.8
	0.102	2.6	0.075	1.9	0.220	5.6	0.130	3.3	0.020	0.5	≤ 32	≤ 0.8
	0.130	3.3	0.099	2.5	0.250	6.4	0.162	4.1	0.030	0.8	≤ 32	≤ 0.8
	0.157	4.0	0.122	3.1	0.280	7.1	0.192	4.9	0.030	0.8	≤ 32	≤ 0.8
	0.189	4.8	0.154	3.9	0.320	8.1	0.225	5.7	0.035	0.9	≤ 32	≤ 0.8
	0.220	5.6	0.180	4.6	0.350	8.9	0.260	6.6	0.040	1.0	≤ 32	≤ 0.8
	0.264	6.7	0.220	5.6	0.395	10.0	0.308	7.8	0.040	1.0	≤ 32	≤ 0.8,

- Can be control the heat conductance by changing the gas pressure

Design Summary

- 1) He in/out tubes are independent and come from upside.
- 2) "Helicoflex" gaskets are used for windows seal. Grove and key structure to >protect thermal expansion. Indium seal are also possible in the preparation >stage.
- 3) Neck cooler to cool absorber vacuum can
- 4) G10 parts to hold the absorber body and the vacuum can
- 5) One more thermometer to measure and control the LH2 level

Requests to make the absorber safer and simpler, if it is possible.

- 1) Enlarge the diameter of vertical vacuum tube as much as possible.
- 2) Enlarge the diameter of horizontal vacuum tube, or shrink the absorber >diameter about 10 mm.